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Let Ci" be the class of real functions of a real variable that are 21T-periodic
and have a continuous derivative. The positive linear operators of the Jackson
type are denoted by L n•p (n EN), where p is a fixed positive integer. The object
of this paper is to determine the exact degree of approximation when approximat
ing functionsJE C:" with the operators Ln•p • The value of max~! L ll ,.(f; x)-f(x)i
is estimated in terms of wlf; 0), the modulus of continuity of1', with 0 = 1T/n.
Exact constants of approximation are obtained for the operators L n,. (n E1\),
p ;> 2) and for the Fejer operators Ln.! (n E1\). Furthermore, the limiting be
haviour of these constants is investigated as n ->- 00 and p ->- 00, separately or
simultaneously.

1. INTRODUCTION AND SUMMARY

1.1. The class of real, continuous, 27T-periodic functions of a real variable
is denoted by C2rr • AssumeI E C2" and let p be a positive integer. The positive
linear operators Ln,p are then defined by

where

L .. .vC/; x) = rI(x + t) k n.vCt) at
-7;

k () = A-I (sin nt/2 )2P
n,p t n.lJ sin t/2. '

(n E 1\)) (LJ)

(1.2)

with An." such that J:1T kn,,,(t) dt = 1.
For p = 1 we obtain the Fejer operators, while the name of Jackson is

associated with L ...2 • Approximation properties of the operators L n •lJ , in
particular those of Ln.! and L n,2, have been extensively studied; cf. Gorlich
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and Stark's survey paper [3], Matsuoka [5] and Schurer and Steutel [6].
Assumingfto be nonconstant, Wang Hsing-Hua [9] proved

max", I LN 2(f; x) - f(x)1 3sup sup , =-
n+lEN fEe. 1F w(f; 7T/(n +- 1)) 2

where w denotes the modulus of continuity of f A similar result for the
Jackson operators in two dimensions was obtained by Bugaets and
Martynyuk [2].

1.2. In this paper the setting is the class C~ of real functions of a real
variable that are 27T-periodic and have a continuous derivative. The degree
of approximation is measured in terms of WI , the modulus of continuity off'.
In particular, we shall deal with the problem of determining the exact
constants of approximation for the operators Ln,p, For nEON, p - 1 EO N

fixed, the exact constant of approximation for the operator Ln,p is defined by

Cn,p : = npi/2 sup !I L n ,l,(f; x) - j(x) I . EO IR f EO CI (t. 7T)
wI(f; 7T/n) , x , 21F' WI , , 11

whereas for the Fejer operators (p = 1) the definition reads

"- !I Ln,lf; x) - f(x) I . - f I (f· 7T) I (1.4)
(n I • - sup (f /) , X EO IR, EO Co" 'WI ,- > 0 .

, WI ; 7Tn' • 11

The norming is prescribed by the limiting behaviour. In order to keep the
constants Cl,p also bounded, definition (1.3) in the case 11 = 1 is replaced by

(p = 3,4,...). (1.5)

For fixed pEON the exact constant of approximation for the sequence of
operators {Ln,p ; 11 EO N} is then defined by

C(p) := sup Cn •v .
nE~

(1.6)

Finally, the exact constant of approximation for the whole class of operators
{L.n,v ; nEON, p ;): 2} is defined by

C := sup c(p).

p:>:2

1 [a] denotes the largest integer not exceeding a.

(1.7)
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1.3. "We give a brief sketch of the contents of the various sections.
Section 2 contains a number of preliminary lemmas. In Section 3 the so
called extremal functions are introduced; just as in the investigation of
the Bernstein polynomials (cf. [7]), they playa crucial role in determining
th~ constants e n•l' • The pattern of deducing the extremal functions is :n
part similar to the procedure given in [7]; a serious complication however
is caused by the constraint of periodicity. The main result of Section 4 is
the proof of c = 277-1 / 2 == 1.128379172• We also determine the exact constant
of approximation for the Fejer operators; it is shown that C(l) ,= 7:"/4 =

0.78539816. In Section 5 the limiting behaviour of Cn,p is considered as
n -+X or/and p -+ CIJ. A separate discussion is devoted to the behaviour of

2. PRELIMINARY RESULTS

2.1. Approximation properties of the opemtors L",p ,vere investigated
in [6]. There the following lemma is proved.

LEMMA 2.1. The coefficients flokn,P) in the expansion

( sin nt/2 )2P
_ (n,p) + ') ,,~p • (n,p) " k"\ " /2 - JLo ~ L., fJ-l. cos, t

", "m t k~l

are gicen by

(2.1)

,,(.n,p) = ~ "-l)i (2P. )Inp + p - k - I~i - 1). ,.., '"
Y"l. ;::0 ( " ] \ 2p - 1 . " \.-,- ..LJ

with the usual convention that (~) = 0 if a < b.

2.2. We proceed with a few inequalities that will be used in Section 4 to
estimate integrals over the kernel (2.1).

LEMMA 2.2. For n E 1\1 one has

sin t (1 2). / ;?o exp - 2- at
11 sm t n

where

(0 < t ~ ;),

a = ;2 log ( ; ) = 0.366039.

o Here and elsewhere numbers are rounded to the last digit shown.

(2,3)
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Proof As X-I sin x is decreasing on (0, 7T), we have

. t ( 1)' tn SIll -;(; n + SIll -+1
11 n

It is therefore sufficient to show that

Put

(2.4)

q(t) := t-1 sin t - exp(-tat2).

Taylor series expansion shows that q is positive on the interval (0, 37T/8].
Furthermore, q is decreasing on [37T/8,7T/2], while q(7T/2) = O. This proves
the lemma. I

Remark. If n = 3 Lemma 2.2 can be sharpened as follows (cf. [8, p. 6]):

sin t (1 2)
3 sin tTf ~ exp - 2: bt (2.5)

where

b = :2 log G) = 0.328658.

LEMMA 2.3. For n E N one has

sin t ~ (1 (1 1) 2)~ ex - - - - t
n sin tin""" p 6 n2 (0 < t < 7T). (2.6)

Proof Inequality (2.6) can be rewritten in the form

sin t (1 2) sin tin (1 ( t )2)-- exp - t ~ --- exp - -
t 6 tin 6 11

(n EN).

Therefore it is sufficient to show that r(t) := t-1 sin t exp(t 2/6) is decreasing
on (0,7T). One has

r'(t) = 1-t-2 exp(tt 2){-3 sin t + 3t cos t + t 2 sin t},

which is easily seen to be negative on (0,7T). I
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LEMM.I\ 2.4. For °::S;; t ::S;; 1T/2 one has

. I. 3 3. "
sm t -+- - sm t + - Sln~ t, 6 40

.--- . 1. 3 3. 5 '(' 1T 149\, 7
~ t ~ sm t + 6 SIn t + 40 sm tiT - 120) sm t.
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Proof This follows from the expansion of t = arcsin(sin t) for t EO [0, Toil].
For details see [8, p. 7). I

Finally, we note that (cf. [4, p. 97])

a result that will be frequently used in Section 4.

3. THE EXTREMAL FUNCTIONS

3.1. As in (1.1) let

Ln,if; x) = r f(x + t) kn."Ct) dt,
-1T

where kn,lJ is given by (1.2). Assuming n E Nand pEN fixed, we shall
determine dn,p defined by

dn ,,, = sup{[ Lln.if; x)!; x E ~,fE .~~;,

where

LI",if; x) := Ln,vCf; x) - f(x)

and '~n : = iF is defined by

LEMMA 3.1.

where, defining J by J(t) = f( -t),

(3.1)

Y;; = {IE IF;j = /'f(O) = O,r(t) :): Ofor t E [0, 1T]}, (3.2)
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and LI n.1Jf is defined, for f E ~ , by

Lln.pf = Ll n.p(!; 0) = r f(t) kn,l,(t) dt.
-11

(3.3)

Proof As for x E IR and f E § also fx E:F, where fe is defined by
f",(t) = f(t + x), we have Ln,p(f; x) = Ln.p(f", ; 0). Hence it is no restriction
to take x = O. As L n.p is linear andf - f(O) E:IT iffE:7, it is no restriction
to take f(O) = O. Furthermore, as Kn.1J = k n •p we have Lln.J = LI n. I,! =
Lln.p(f +])/2; hence it is no restriction to take f such that f = f. Finally,
it is no restriction to assume that Lln.pf;?c 0, as for fE:F we have -fE:F.
It follows that for even f E:7 with f(O) =, 0 we have f E ~ and 1?' f if we
definelby 1(0) = 0 andl'(t) = max(O,!'(t)) for t E [0, 7T], and by symmetry
on [-7T, 0]. As Jet) ;?c f(t) for all t it follows from (3.3) that Ll n.pl ;?c Lln.pf
This proves Lemma 3.1. I

We now have to maximize

J11 J31T/2
Lln.pf = f(t) kn.it) dt = ,. f(t) kn,p(t) dt

-7T -JT/2

for fE ~. We first prove two general lemmas.

LEMMA 3.2. Let K be a finite, nondecreasing fimction on [-t, tJ and for
fixed n E N let '!II - '!Il,n be defined by

m _ l . [ 1 1] fill. - - (0) - 0 I' ( • 1) 11c;t1 - Ig. - 2" '2" -+""-, g - g, g -, g contmllollS, WI g, 11 ~ .

Then

sup f1/2 get) dK(t) = (/2 ,Mt) dK(t),
yEWl '-1/2 -1/2

where gi == gl,n is defined by gl(O) = 0 and

_'e ) .+ 1gi t = j 2" (1- j + 1 . - 0 ±l ±? )< t < ,j -, , _,....
n n I

Proof The proof of this lemma involves exactly the same steps as the
proof of Theorem 3.1 in [7]. This is apparent if we write the Bernstein
polynomial as B,,(f; x) = J~f(t) dK(x, t). I
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LEMMA 3.3. Let K be a finite, nondecreasing fimction on [~1, tJ and for
fixed n E N let '52 == '52, n be defined by

, r 1 1] _ (1' ,. 'J'
'52 = 19; l-~' 2- ----+~; g = g, g ")) = 0, g COntIJ1UD1IS, WI (g;~) s::; I:,'I _ _, . d,

Then

where g2 = g2,n is defined by ilD = 0 and

i~(t) = -j
2j - J

4m
2j< t < ----"----c-

41
'-n-'j = 0, ±l, ±2, ...)

if 11 = 2m,

g~(r) = - V+ ~)
, i
( 2111'+ 1 < t <

(3.4)

j -+- 1 . 0 ± I ±2 "
2m + 1 ,.! =', <, ,.....

if 11 = 2m + L

Proof For g E '52 we have, using integration by parts,

1/2 1/2 ('1 '2

Dg := L
1

/
2

get) dK(t) = Ll/
2

g'(t) .It dK(u) dt. (3.5)

We first state and prove three propositions.

PROPOSITION (i). It is no restriction to take g concave, i.e. to take g'
nonincreasing.

Proof For g E C§2 we define an even function g by gm = 0, and

f(t) = sup g'(s)
t-<I5~O

(- t ~ t ~ 0).

It is easily verified that g' is nonincreasing and that g E '!I2' As g'(- t) 

g'(~t) = g'(t) - g'(t) ::): ° on [0, tl and f~/2 dK(u) is l1onincreasing, it
follows from (3.5) that Dg ::): Dg.

PROPOSITION (ii). Let

'!Ii = Ig: [- ~ , ~] ----+ IR.; It = g, g (~) = 0, g' nonincreasing, g' contim!Ous

fi fi . I . (1\ s: 1)except or mte y mallY Jumps; Wi \ g;;) ~ j'
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Then
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sup Dg = sup Dg.
ge@2 (JE9J1;

Proof By Proposition (i) g' may be taken to be nonincreasing. Further
more, any g' with g E ~: is the pointwise limit of functions g~ with g n E ~2

and having the same WI value. By (3.5) this proves Proposition (ii).

PROPOSITION (iii). It is no restriction to assume that g E ~t satisfies

g'(t) = g' (t - ~) - I (3.6)

Proof If for g E~: condition (3.6) is violated for t = to with
to E[-t + lin, 1/2n), then g can be replaced by go E~: as indicated in
figure 3. I below, where the graphs ofg' and g~ are shown. Here g~ is obtained
from g' for t < 0 as follows:

(t ~ to - ~ and g'(t) < g'(to) + 1)
g'(t) (otherwise),

and by symmetry for t > o.

g~
g'--=-~;--_. --A

i I
I
I,..------
I I
I I
I I

to
o

FIGURE 3.1

t_

Clearly, Dgo ~ Dg (cf. the proof of Proposition (i», and go E ~t if g E ~r

Hence attention may be restricted to functions g satisfying (3.6), with the
possible exception of the point t = 1/2n, which does not affect the value of
Dg. This proves the proposition.

Now let g E~: satisfy (3.6) and let g'(t) = (g'(t - 0) + g'(t + 0»/2 be
defined for t in [-t, H redefining g' in this sense at discontinuity points
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does not affect (3.6). Then, as we have g'(O) = ° and g!(-i/2n) =
-g'(l/2n) = t, it follows in view of (3.6) that for j = 0,1, ... , n we have

,( l+J) 11 •g - - - = - - 1.
2 n J 2 -

(3.7)

We nmv replace g by gE 0'; obtained by joining the straight lines tangent
to the graph of g at the points (-t + jln, g(-t + jin», i.e., '.\lith tangents
given by (3.7). As g is concave we have g ;;;: g and hence Dg :;;: Dg. Finally,
we show that gE 0't, Writing YJ = g(-t --;- jln) for g E 0't satisfying (3.6),
we have bv integration'.. ~

1
Yj+l - 2Yj + Yj-l = - - .. 11

with Yo = Yn = O. It follows that all functions in 0'1 satisfying (3.6) have
graphs that pass through the points (-t + Jln,j(l - j/n)/2) for} = 0,1,... , n.
Thus the graph of g passes through these points, and hence g is identical
with the function g2 as defined in (3.4). Clearly, from the previous propos:
tions and the construction of g2 it follows that Dg2 ;;;: Dg for g E ~(j2 . This
proves Lemma 3.3. •

3.2. We a;-e now in a position to prove the main result of this sect'con.

TEEORBI 3.1. Let dn,p be defined by (3.1). Then

dn 'P = r" in(t) k n '[JCt) dt,
"'-';1

where in is defined by inCO) = 0, j~, is even, and

(3.8)

'

I i +!. 2

f> ()=)2m-j

. '''' l I
(~~ (j + 1) 'iT . _ 0 1 '1 - 1\

2
< t < 2 ' I - , , ..• ,.1. ,

\ 111 rn'; ;

(
'iT (2j-l)'iT (2j+l)'iT

-2 < 4 < t < 4 - < 'iT,
, nl 111

j = 111, in + 1,..., 2m)

(m = 1, 2, ...) (3.9)

(
ITT • (j + 1) 'iT . _ , \

-2--1- < I < ~ + I ,J - 0,1,... , fill
. 111 + LYIl ,

f j'iT (j + 1) 'iT
\2111+1 <t< 2m+l

j = 111 + 1,111 + 2, ... , 2m)
(m = 0, 1, ...) (3.10)
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Proof The function jn, except for a linear transformation, consists of
the functions gl,n and g2,n put together. To be precise we have

(0 ~ t ~ ; ),

(; ~ t ~ 7T)

for t E [0,7T], and by symmetry elsewhere. One easily verifies that (by good
luck) the jumps at (or close to) t = 7Tj2 ofj~ are such that w1(/n ; 7Tjn) = 1,
and hence that f,; is the pointwise limit of derivatives of functions in ~
(cf. (3.2». Finally we have 11

sup rf(t) kn,p(t) dt
fEYO 0

~ sup If/2

fl(t) kn,p(t) dt + fl ( ; ) r kn'1.(t) dt1
IIE.... O 0 Tt/2 ~

JTt/2 - (t) - (1) ITt
= 7T 0 gl,n ---:;- kn,it) dt + 7Tgl,n 2" Tt/2 kn,it) dt

+ 7T ITt g2.n (_t - 1) kn,p(t) dt
Tt/2 7T

= r jn(t) kn,p(t) dt.
-Tt

This proves the theorem. I

COROLLARY. The (extremal) functions jn are given by

_ 1 In j7T
f2m+l(t) = 2" I t I + j~ (I t I - 2m + 1t

- j~~+l (I t I - 2'!~ 1)+

where a+:= max(O, a).

(m = 0, 1, 2,...), (3.12)
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4. THE EXACT CONSTANTS OF APPROXIMATION Cn,v FOR TIlE OPERATORS L n .1>

4.1. Case p ? 2. The main object of this section is to determine the exact
constant of approximation for the class of operators {Ln,J) ; n EN; P - 1 EN},
i.e. to determine (cr. (1.7))

C := sup sup cn ,£) ,

p~2 nEN

where C n ,;! is defined by (1.3).
Both in (1.3) and in the definition of dn.v in (3.1), it is not an essential

restriction to take WI in fact equal to one. It then follows from Theorem 3.1
that

C ' = IIp] /2d = n'PIj2 f" f- (t) k (t) dt11,1) n,p , n n.p
• -'IT

(n, p = 2. 3,...) (4.1)

and

C1,2 = 2-3 / 217-1 r I t I dt = 17 2-3 /2 = 1.1107.
-'IT

According to definition (1.5) one has

Cl,f) := C1,2 = 1.1107 (p = 3,4,...). (4.2)

Defining
in(t) = tit I + hit),

we conclude from (4.1) that

C",1J = SI(I1, p) + S2(n, p),
where

S1(11, p) = np1/2 J" tit I kn,z,(t) dt,
-'IT

S2(n, p) = 11pl/2 r hn(t) k",vCt) dt.
-'IT

(4.3)

(4.4)

(4.5)

Using (1.2) and taking into account that hn(t) ==c 0 if : t I ~ 17/n, we easily
find

SI(Il, p) = (jn'ITPl/2/2 ( :in trl~'2 . )21' dt)-l
o 11 Sll1 tp-I/2n-· ,

(f
n'ITPl/2/2 , sin tp-1/2 )2P )

X t I . '2 1 dto \ 11 SIll tp-if" n- I ,

=: N-1(n, p) TI(n, p), (4.6)

S.(n p) == (In'ITPlI2/2 ( sin tp-1/2 \)2P dt)'-l
- , 0 11 sin tp-1/2 n-1 /

( r"'lT/2 (2t)( sint )2P ')
X P nh" - . / dt

• 7l!2 11 , \ n sm t, 11

=: N-1(n, p) T2(n, .0). (4.7)
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We observe (cf. Lemma 2.1) that

(n p) II')1TfLo' P -
N(n, p) = 2n2p- 1 (4.8)

4.1.1. We proceed with giving a lower bound for N(n, p) and upper
bounds for T1(n,p) and T2(n,p) .

.LEMMA 4.1.

where (ef. (2.3»

8 (1T) .a = 1T2 log 2 = ~.366039.

Proof. In view of (4.6) and Lemma 2.2 we have

(n, pEN), (4.9)

(7T
pl12

/2 1 ( )1/2
( )?: J

o
exp(-at2

) dt = 2: ; 'erf ; (pa)1/2. I

This bound for N(n, p) increases with p. Numerical values can be obtained
from [1, p. 3U].

LEMMA 4.2.

+ __P_ 1T2 2-(2p+ll

P - 1
(n, p = 2, 3, ...). (4.10)

Proof. Assuming n ?: 2, P ?: 2 and taking into account (4.6) one has

."pl/. ( sin tp-l/2 ) 2p

T1(n, p) = j t . 1/2 1 dt + R.o n sm tp- n-

By means of the inequality

. 2
sm x;? - X

1T
(4.11)
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it is easily shown that

R < --p- 7T2 2-(2p+1;.
p-l

Furthermore, an application of Lemma 2.3 gives

3 ( 1 )-1 ' (1 ( 1 \ .
= - 1 - -. !1 - exp - - 1 - -) 7T2,)) I.

2 11 2 I \ 3 \ n2
'\

LEMMA 4.3.

1
4 ( 1 \ -1 16 ( 1 )-2'

T2(11, p):OS;; -9 1 - -d + -32 1 - --:2 (
n ' 7Tp ", \

I

165

( 1 (1 __1_') 1T2p) --L 7r
2
p ?-2p-H

X exp - 12 112 ! 27(p - 2) -

(n ? 2, p ? 3). (4.12)

Proof One easily verifies that

(t ? 0). (4.13)

Taking into account (4.7) and using (4.13) one has

32 11 ." pI.'" , sin tp-lj2 \ 21'

Tin, p) :os;; "5-72 -I t3
( .' -1/2.-1 I dt_,1T P '"p'/2/2 . I, sIn tp It

...L J""/2 3 ( sin t )2P I, pt . , dtt.
IT 11 Sin tin, 1

(4.14)

The first integral in the right-hand side of (4.14) is taken care of by an
application of Lemma ,2.3, whereas 7T2p2-2p

-:-4 /(27(p - 2» is a crude estimate
for the second integral in (4.14). For details we refer to (8, pp. 19-20]. I

Lemmas 4.1, 4.2 and 4.3 will be used to estimate the constants cn . p if n
and p are not too small. For very small values of 11 and p a different approach
will be needed (ef. Sections 4.1.5, 4.1.6).
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4.1.2. Case It = 2, P ;> 2. In this section we consider the behaviour of
the sequence {C2.P}~' According to formulae (4.1), (3.11), (4.3) and (2.7) we
have

c2 ,P = 2p l/2 r J2(t) k2,p{t) dt
-rr

22p+2(p ')2 pl/2 If7T/2 f7T /2 I
= 7T(2~)! l 0 t(cos t)2P dt + 0 h2(2t)(cos t)2P dt p

where

(4.15)

(0 ~ t ~ :)

(
7T 37T )
4~t~-8-

(
37T 7T )
-8-~t~2'

LEM1\<[A 4.4. The sequence {C2.p}~ is increasing and

lim C2,P = 27T-1 / 2 = 1.12837917.
P-""O

(4.16)

Proof Only a sketch of the proof will be given; for details the reader is
referred to [8, pp. 21-23]. By use of Lemmas 2.4 and 2.3 an elementary but
rather tedious computation shows that C2,!J < C2,P+l when p ;> 8. The
constants C2,P (p = 2,3,... ,8) can be evaluated explicitly (cf. Table 4.1 of
Section 4.1.7). Taking these data into account the first assertion of the
lemma follows. As for (4.16), it is easily seen that the limiting behaviour
of C2 •P is governed by the first integral in the right-hand side of (4.15). We
have

."'-' fro U exp(-u2) du == t
o

(p --+ 00).

This, together with an application of Stirling's formula proves (4.16). I
The remaining part of Section 4.1 will be devoted to showing that

c = 27T-1 / 2•

4.1.3. Case n ;> 4, p ;> 5. Here we shall be concerned with estimating
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the constants Cn,p if n ~ 4 and p ~ 5. In view of (4.9) and using [1, p. 311]
we find that

1 ' 71' ' 1/2 ( 71' )
N(n, p) ~ "2 ~~) erf 2 (5a)l/2 > 1.4579 (nEN.p~5). (4.17)

An application of formulae (4.10) and (4.12) yields, for n ~ 4 and p ~ 5,

8 ( (2571'2)) .T1(n, p) ~ 5 1 - exp - ---r6. + 5172 2-13 < 1.606t, (4.18)

(
64 -L 4096) (' 2571'2) 5172

Tln, p) ~ 135 I 337571'2 exp ,- 64, + 5184 < 0.0222. (4.19)

By (4.4), (4.6) and (4.7) it follows from (4.17), (4.18), (4.19) that

Cn • p < 1.1169 < 217-1/2 (11 ~ 4, P ~ 5). (4.20)

4.1.4. Case n = 3, p ~ 5. Inequality (4.9) is not sharp enough to take
care of this case. However, proceeding as in the proof of Lemma 4.1 and
applying (2.5) and (4.6) we obtain the following improvement on (4.9):

where

Hence

1 ( 71' )1/2 ( 17 '
N(3, p) > 2' b. erf ,2 (pb)1/2)

b = ~2 log (~) = 0.328658.

(p EN),

N(3, p) > 1.5386 (p ~ 5).

Using this estimate together with an application of Lemmas 4.2 and 4,3
one easily obtains

(p ~ 5).

4. L5. In view of the results already obtained, the cases p = 2, p = 3
and p == 4 remain to be considered. The bounds provided by Lemmas 4.1,
4.2 and 4.3 are now not accurate enough to show that Cn .v < 217-1/2. We
shall do this in a different way. We first note that it is easy to get good
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bounds on N(n, 2), N(n, 3) and N(n, 4). By means of (4.8) and (2.2) we have
for instance

7r 31 /
2(l1n5 + 5n3 + 4n) 11

N(n, 3) = 40/15 > 40 7r 31
/
2 > 1.4963 (n EN). (4.22)

We now consider T1(n, p), which, apart from a factor p, is identical with
f~,,"/2 t((sin t)/(n sin t/n»2P dt. Using (2.4) we deduce that

J
(n+1),,"/2 ( sin t )2P

In+l.p:= 0 t (/1 -+ 1) sin t/(n + 1) dt

I
n ,,"/2 ( sin t )2P 5("+1),,"/2. sin t )2P

,;:: t. dt + t . dt
'-':: 0 n sm tin ".d2 ( (n + 1) S111 t/(n + 1)

(4.23)

where we have used (2.7).
Repeated application of (4.23) for a fixed rio EN gives

(s EN).

(4.24)

A similar procedure will be used to obtain an estimate for T2(n, p), which,
apart from a factor p, is identical with (cf. (4.7» the integral

r
n ,,"/2 . 2t)( sin t )2P

nh". -. dt.
-,.,12 (/1 ,ns111t//1,

(4.25)

In order to do this we need the following result, for the proof of which we
refer to [8, pp. 27-28].

LEMMA 4.5. Let the function h". be defined by (4.3). Thenfor n E N one has

nh" (~) ~ O.267r112 sin2 ~
n n

(4.26)

In order to estimate the integral (4.25) it is convenient to have the graphs
of the functions nh".(2t/n) available for the first few values of n. These graphs
are shown in figure 4.1, in the construction of which formulae (3.11), (3.12)
have been used.
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Using Lemma 4.5 and taking into account (2.4), (2.7) and (4.11), we have
for n ? 5

. __",,/2" (2t \ ( sin t )2P _ .3,,/2 . ,.",,/2

J".P .- J"/2 I<h n , 11 ) n sin tin dt - 1,,/2 -t- J3,,'2
r3"/2 (2t)( sin t )2P r"rr/2 (sin t)2P ,

oC ],,'2 5115 ,5.. 5 sin t/5 dt + 0.26'iT '30-'2 (n sin f,ln)2P-2 at

n-1, . ''IT -2p+2 ,U+1ld2. _
< J5,·p + O.26'iT ~3 (11 Sill ';/1) t"'2 (Sill t)"P dt

O26 9(2 )' n-1 0 ')6 2(') )1 CD---- J + . 'iT- p. '\' '-2P+2 J ' .- 'iT -p . \' '-2p+2 (4 ')1)
~. 5.p 22P+l(p!)2 ':-:3 1 < 5.D T 22P+1(1I!)2 f::J .. '-',

J- ~ }~ ...

Inequalities (4.22), (4.24) and (4.27) will be used to dispose of the case
p = 3 and 11 sufficiently large.

4.1.6. Case 11 ? 3, 2 ~ p ~ 4. In Section 4.1.7 we shaH give a set of
formulae with which the constants en .v may be computed explicitly. These
formulae yield (cf. (4.5))

S (5 3\ = ~ 31/2 _ 10(3)1/2 (1686 ' 1246 + 666 , 24~ '_ 56 I ~\
1 ,j 4 'iT 175171" T 9 25 -, 49 ,- 81 -, 12li

= 0.955187,

S F_ 3) - 2 31/2 _ 20(3)1/2 (2 2.!!- e 1T _ 1)
2tJ , - 71" 175171" cos 5 + CO~ 5 .,

(1686 - 1246 _ 24~ 56 --L ~\l ~ 0017108
X 9 49 + 81 ' 121. - . . - .

Accordingly C5•3 = 0.972395.
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Using these data, formula (4.22) and the definitions of In,p and In,p we
obtain

1.5,3 = 0.485382, J5,3 = 0.008744.

Applying (4.24) and (4.27) in the case p = 3 gives for n > 5

5 9 ( 5 -6 <Xl

111.,3 0(; I s,3 + 6~- sin 1;) != j-S < 0.485635,
J=6

J",3 0(; J5,3 + 1:2~2 %/-.,1 < 0.016693.

From these results and (4.22) it follows that

and hence

Sl(n, 3) < 0.9737, Sln, 3) < 0.0335 (n > 5)

C",3 < 1.0072 < 27T-1 /
2 (n > 5). (4.28)

The constants C3,3 and C4 ,3 can be computed explicitly; their values are
contained in Table 4.1 of Section 4.1.7.

The cases 11 ?: 3, p = 2 and n ?: 3, P = 4 are treated in a similar way.
Using the values of Sl(19, 2) and Sl19, 2) from Table 4.1 we obtain

Similarly one finds

C".2 < 1.1256 < 27T-1/ 2

Cn ,4 < 1.0107 < 27T-1 / 2

(n > 19).

(n > 4).

(4.29)

(4,30)

(4.31 )

For computational details the reader is referred to [8, pp. 31-32].

4.1.7. As is apparent from the preceding sections, Cn,p has to be com
puted explicitly for a few particular nand p. The values of C2•p (p= 2, 3, ... , 8)
(cf. Section 4.1.2), C3•3 and C4 •3 , Cn ,2 (n = 2, ... ,19), C3 ,4 and C4 ,4 (cf. Sec
tion 4.1.6) are contained in Table 4.1. To obtain these numbers we use (4.5),
together with Lemma 2.1 and formulae (3.11), (3.12). It can then be shown
that one has

11'P
1/ 2 ! [("P-,,+1).'2] I

2 fL2k-l
Sl(n, p) = 47T 7T - 8 L -(2k _ 1)2 \"

I,~l (1-0

where the coefficients fLk : = fLr"P) are given by (2.2).
If n = 2m + 1 the expression for S2(n, p) reads

(4.32)
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When n = 2m a similar formula for Sln, p) can be derived, which we
refrain from giving here. For details we refer to [8, pp. 32-36].

By means of (4.31) and (4.32) the data of Table 4.1 was computed on the
Burroughs 7700 of the Computing Centre of the Eindhoven University of
Technology.

TABLE 4.1

n p S,(n,p) S,(n, p) en,:!, n P S,(n,p) 50(11, p) Cn,p

2 2 1.0210 0.0291 1.0501 6 2 0.9571 0.1085 1.0655
2 3 1.0545 0.0123 1.0668 7 2 0.9528 0.1114 1.0642
2 4 1.072! 0.0053 1.0773 8 2 0.9495 0.1127 1.0622
2 5 1.0829 0.0023 1.0852 9 2 0.9472 0.1143 1.0615
2 6 1.0903 0.0010 1.0913 10 2 0.9454 0.1144 1.0599
2 7 1.0956 0.0005 1.0960 11 2 0.9441 0.1149 1.0590
2 8 1.0996 0.0002 1.0998 12 2 0.9430 0.1149 1.0579
3 2 0.9945 0.0733 1.0678 13 2 0.9422 0.1152 1.0573
3 3 0.9890 0.0197 1.0087 14 2 0.9414 0.1150 1.0565
3 4 0.9974 0.0063 1.0037 15 ., 0.9409 0.1150 1.0559L.

4 2 0.9740 0.0917 1.0657 16 2 0.9404 0.1149 1.0553
4 3 0.9656 0.0181 0.9837 17 2 0.9400 0.1149 1.0549
4 4 0.9742 0.0051 0.9793 18 2 0.9396 0.1148 1.0543
5 2 0.9641 0.1059 1.0701 19 2 0.9393 0.1147 1.0540

4.1.8. Taking into account (4.16) and (4.20), (4.21), (4.28), (4.29), (4.30),
together with the contents of Table 4.1 and formula (4.2), we have the
following theorem.

THEOREM 4.1. Let C'1l,p be the exact constant of approximation for the
operator L" ..D as defined in (1.3). Then

c := sup sup Cn,p = lim CZ. 2J = 27T-1f2 = 1.12837917.
P>2i nEt\! p-H'£.'

COROLLARY. Let fE C:" and let Wi be the modulus of continuity of f',
then for n E Nand p = 2, 3,... one has

217-1
/
2 (~7l" \

max I Ln.if; x) - j(x)1 :< -1/9 OJI J; --. ,,_
x ~ - n .

where the value 27T-1f2 is best possible.
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4.2. Case p =, 1. Taking into account definition (1.4) and the form of
the Fejer operators, together with the results on extremal functions of
Section 3, we have

1 J" - (sin ntl2 )2
Cn,l = -2-. In(t) . 12 dt7Tn _" sm t

We write (cf. (4.3) and (4.4»

Cn.l = SI(n, 1) + S2(n, 1),

where

(n EO 1\1). (4.33)

1 i" (sin ntl2 )2SI(n, 1) = -2- t . 12 dt,
7Tn 0 sm t

1 i" (sin ntl2 )2S,(n, 1) = - hn(t) . 12 dt.
" 7T11 0 . sm t

By means of Lemma 2.1 it is easily shown that Sin, 1) decreases monotoni
cally to zero as n -->- 00. In order to determine Cll) := SUPnEN Cn,l we need
an upper bound for S2(n, 1). As hn(t) - 0 if i t I ~ 7Tln one has

1 J" (sin ntl2 )2 2 r""/2 (2t)( sin t )2S2(n, 1) = - h,,(t) . I? dt = -2 hn - . 1 dt
7Tn "in sm t _ 7Tn ',,12 n sm t n

052 J""/2~ -'- sin2 t dt < 0.I37T = 0.4084
11 'IT /2

(n E 1\1). (4.34)

by an application of formula (4.26). Furthermore, one easily verifies that

and

Cl,l = : = 0.7854, C2,l = ~i - 2~ (21
/
2 + 1) = 0.4993 (4.35)

SI(3, 1) = : - 3~ = 0.3610. (4.36)

As Sl(n, 1) is decreasing, formulae (4.34), (4.36), together with (4.35) imply
the following theorem.

THEOREM 4.2. Let Cn,l be the exact constant of approximation for the
operator Ln,l as defined in (I.4). Then (cf (I.6»

7T
e{l) := sup cn •l = C1 ,l = -4 = 0.78539816.

nEN
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COROLLARY. Let fE Ct" and let WI be the modulus of continuity of j',
then for 11 E' None has for the Fejer operators L".I

lvhe z'c the I.due 7r/4 is best possible.

5. TH'E LIMITING BEHAVIOUR OF THE COl\:STANTS Cn,f!

5.1. In this section \ve investigate the lilniting behaviour as n ---j~ 00

or/and p -+ 00 of the exact constants of approximation en ,l' . There are four
cases to be considered, viz., n ---'>- 00, P ?': 2; n ?': 2, p -+ 00; !l -+ GO, P -+ a::;
n -;. CD, P = 1, the last case corresponding to the Fejer ope:-ators. It turns
out that en,l has an asymptotic behaviour that is different from that of C;1.!'

for p ?': 2.

5.2. Case 11 -+ 00, p ?': 2. Let dn,J) be given by (2.8), i.e. let

dn,J) = r fn(t) knjt) dt
-rr

(p ?: 2).

As a guide to norming we regard k n.]) as the probability density of a random
variable (LV.) Tn,f!' For the expectation ETn.f! and variance val' T",p vl1e
have

ETn,p = 0,
/"""

val' T n ,1> = ET~,p = I ,2kn.p(t) dt.
",1_

1T

It is easily verified (cf. [6, Lemmas 2 and 4]) that

. T 6val' ~ n p ,....., ----.,-, n-p

Denoting the probability density of a LV. X by gx we generally have for
a>O

and therefore, letting n -;. rD,

_ ~ (~) _ (fOO (Sin t )21> .\-1 ( sin t \ 2p ='- len.,," dl
J

• I . g,lt). (s.n
11 11 , -eN t \ ! ,
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It follows by dominated convergence Un(/) :(; a I I I + b11/ 2; cf. (5.3)) that
for 11 --+ 00 one has

11 .rr • Inrr
/2 - (21) (2t ) f'"

2
- J in(!) kn,p(t) dt = in - kn,p - dt --+ 1*(t) gp(t) dr,

-rr -nrr /2 11 n -00

where (cf. formulae (3.11) and (3.12))

Summing up we have the following theorem.

TllEOREM 5.1. For p ~ 2

Cp := lim Cn,p = lim I1pl/2 Irr

in(t) kn,p(r) dt
It---7:::t:j ll-)J:j -7f

where gv is defined by (5.1).

Table 5.1 contains the values of Cp for p = 2(1)10; 20(10)40. For details
concerning the numerical evaluation of these numbers we refer to [8, pp. 41
42].

TABLE 5.1

p Cp P cp P Cp

2 1.04547748 6 0.95729217 10 0.96499488
3 0.95048119 7 0.95991291 20 0.97109617
4 0.95047131 8 0.96199158 30 0.97313267
5 0.95404617 9 0.96365107 40 0.97415086

5.3. Case n ~ 2, p -+ w. ·We begin by considering cnpl/2Tn,p, where C

will be given a convenient value. It is easily verified that

where

1 (t)1/2 t = --- k --- --+ tgcnp Tn}) cnpl/2 n,V cnpl/2 g(n)( ) (p --+ W),
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If we take (1'12 - 1)/(6n2c2) = 1 it follows that (p(n2 - 1)/6)1/2 Tn,p is
asymptotically standard normal. By dominated convergence this means that

(2'lT)-1/2 1", , (-t2 ) -
-+ --2-- : t ! exp -2- at

-crJ f

where an,v = (p(n2 - 1)/6)1/2.
We have now proved the following theorem.

THEOREM 5.2. For 1'1 ~ 2

'" . 3 1/2 1 \ -1/2
lim Cn,v = lim np1/2 f in(t) kn,vCt) dt = (-) (1 - -.I .
p->", P..,crJ -rr \ 'IT n~ !

We note that if n = 2 we have limp..,,,, C2,p = 2'lT-1 / 2 (cf. (4.16». Further
more, it follows that {limp..,,,,, cn,p};;:' is a decreasing sequence.

5.4. Case n -+ 00, P -+ 00. From Theorems 5.1 and 5.2 we obtain (com
pare Table 5.1)

THEOREM 5.3.

f'" .. ' :< )1 /2
lim Cn,v = lim np1/2 in(t) kn,p(t) dt = (-~- = 0.97720502,
ll-')::O ll--'l>OC -'TT \ 1T J
p-4X p-):;Q

where the limits may be taken in either order.

Proof. It is an immediate consequence of Theorem 5.2 that limn_>oo lim p ,_",

Cn,p = (3/rr)1/2. On the other hand we obtain from Theorem 5.1, using
dominated convergence for integrals and sum,

. . -1 [,00 (sin Up-1/2 ' 21'

hm Cp = hm A p J u -1'2) du
p"'''' p->"J 0 up'

_ 00 foo ( 'lTjp1 /2 )( sin Up-1/2 ,2p 1+ 2 L: • u - -2- -1/2 I dUJj~l ";1'1/_/2 • up, I

(f "" ( u2
) )-1 f'" ,u2

) ( 3 ,1/2= 0 exp - 3 du 0 U exp ( - 3 du = --:;:;:-) ,
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where we have written

SCHURER AND STEUTEL

f ro (sin Up-l/2 )21' _
---.-O.~lI-=-.- du - A l' .

o up- ~
I

5.5. Case n -+ 00, P = 1. The behaviour of Cn,l (cf. (1.4» differs from
that of Cn,l' for p ~ 2. This is due to the easily verified fact that

var Tn 1 = ET;, 1 = I 7T
t 2k n let) dt = 0 (l)

. '-7T' n
(n -+ 00), (5.2)

whereas for p ~ 2 we have var Tn,l' = 0(n-2). In view of (3.9) and (3.10)
we deduce that

I
~ + to(1)

- 211'
In(t) = 2

n7T _ n (11' - t) + to(1)
4 211'

(0 < t < ;)

(; < t < 11')

(n-+ 00). (5.3)

From (5.2) it follows that E I Tn•l I = 0(n-1/ 2). Using this, (5.3) and formula
(4.33), one has by dominated convergence

I f7T - ( sin 11t/2 )2
Cn,l = -2- in(t) . I') dt11'11 -7T SIn t _

/"'OooJ _1_ [1 7T
/
2 (2 ( sin nt/2 )2 dt

211'2 0 sin t/2

+ f" l~ _ (11' _ t)21( si~ I1t/~)2 dt]
J,,/2 12 I sm t/2

->- 4
1

2 f" /2 . ~ 2 I') dt + 4
1

2 rtf I 11'2
2

- (11' - t)21 .; /2 dt.
11' 0 sm t _ 11' '.,,/2 1 I sm t

Here, the limit is obtained by the Riemann-Lebesgue lemma. By simple
transformations it follows that (cf. [4, p. 123])

. 2 7T /4 t 2 2 I,1T /4 t 2 1
bm Cn,l = 2 f ~t dt - 2 --2-t dt + -4
/l->CO 11' 0 SIn 11' 0 cos

2 f7T/2 t 48
-- --dt=-- 11'2 sin t 1T2,o
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where f) denotes Catalan's constant: () = L::o (-l)i(2j + 1)-2 = 0.91596559.
This proves the following theorem.

THEOREM 5.4.

COROLLARY. Let fE C~" and let WI be the modulus of contil1uitJ cf f',
then for nEON one has the following inequality for the Fejer operators L".1

with lim,,_>c£ Cn . l = 4(}!rr2 = 0.37122687.

Remark. With a little more effort it can be proved that cn •l = 4&/1T2 -r
0(n-1) as n -- 00.
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